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Abstract. A fully analytical theory is developed for the motion of a single hole in thet–J
model based on the spin-polaron idea. With a self-consistent treatment of the hole–spin-wave
interaction, we are able to overcome the difficulties encountered by the intermediate-coupling
theory of Barentzen and obtain a theory applicable over the full range of the coupling strength.
Good agreement with numerical studies is achieved.

The problem of hole motion in an antiferromagnetic background has become one of the
central issues in developing the theory of high-temperature superconductivity, since the
undoped parent phases of copper oxide materials are antiferromagnetic insulators. The
t–J model is the simplest and most frequently used model for describing such strongly
correlated systems. Numerous authors have studied this problem within thet–J model
description [1–12], both analytically and numerically. Although there has been increasing
consensus concerning the bandwidth, band shape and spectral weight of the coherent motion
of the doped hole [13], the situation is still controversial, largely due to the fact that most
of these studies rely on numerical calculation for small clusters (even the self-consistent
Born approximation theory (SCBA) involves solving Dyson’s equation for a small cluster
[9]) and cannot be extended to the thermodynamic limit. Hence a fully analytical theory is
highly desirable.

Intuitively, one expects the moving hole in thet–J model to be dressed by a cloud of
virtual spin excitations, in much the same way as an electron in a polar crystal is dressed by
virtual phonons [14]. In view of this formal similarity, it is natural to treat this problem using
the methods of polaron theory. Along these lines, Barentzen has put forward an analytical
theory [8] with the aid of the intermediate-coupling treatment of Lee, Low and Pines for
the Fr̈ohlich polaron problem [15]. But, as pointed out by Barentzen, such an intermediate-
coupling theory is inapplicable in the strong-coupling regime which is of physical interest.
For example, it predicts a monotonically increasing bandwidth as a function of the coupling
strengtht/J and finite limiting values for both the bandwidth (of ordert) and the spectral
weight in the strong-coupling limit. It is also found that this theory produces an artificial gap
in the spin-excitation spectrum which grows with increasing coupling strength upon doping
an additional hole into the antiferromagnetic background, and it has been argued that this
may be why intermediate-coupling theory fails in the strong-coupling regime. Furthermore,
we note that the result of this theory is a set of coupled integral equations whose solution
also relies on numerical calculation for a finite momentum cluster, and we can hardly gain
any useful intuition about the motion of the hole from such a complicated calculation.

In this article, we put forward a fully analytical theory for the motion of a single hole
in the t–J model based on the spin-polaron idea. With a self-consistent treatment of the
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hole–spin-wave interaction, we are able to overcome the difficulties encountered by the
intermediate-coupling theory and thus obtain a theory applicable over the whole range of
the coupling strength. We find that at the weak-coupling limit (t/J � 1), the hole band has
a width of ordert2/J and the spectral weight of the coherent motion of the hole approaches
unity, while in the strong-coupling limit (t/J � 1), the bandwidth behaves asJ ln(t/J )
and the corresponding spectral weight vanishes likeJ/t . Furthermore, we find that the
band shape evolves monotonically between these two limiting cases with the coupling
strengtht/J . In the weak-coupling regime (whent/J < 0.675), the band minimum is
located at(π/2, π/2) with a shallow hole pocket around it, and(π, 0) is quasi-degenerate
with the band minimum and is surrounded by an extended flat region. However, in the
strong-coupling regime (whent/J > 0.675), the band minimum is replaced by(π, 0),
and (π/2, π/2) becomes a saddle point. A possible relation to a result from a recent
photoemission experiment is addressed.

In the linear spin-wave approximation, the Hamiltonian of thet–J model reads [3, 4]

H =
∑
q

ωqb
†
qbq +

zt√
N

∑
k,q

[Mq(k)f
†
k−qfkb

†
q + HC] (1)

where

ωq = zJ

2
ω(q) ω(q) =

√
1− γ 2

q

Mq(k) = uqγk−q + vqγk γq = 1

z

∑
d

exp(iq · d).

Here fk and bq are the annihilation operators of the hole and spin waves,d denotes the
nearest-neighbouring bond vector, anduq andvq are the usual Bogoliubov transformation
coefficients:

uq =
√

1+ ω(q)
2ω(q)

vq = −sgn(γq)

√
1− ω(q)

2ω(q)
.

Obviously, the total momentum of the hole and the spin-wave system is a constant of
the motion. As in the polaron problem, we introduce a unitary transformationU to eliminate
the momentum of the spin-wave system so as to partially diagonalize the Hamiltonian with
respect to the hole operator. For the single-hole problem,U is given by [8, 16]

U =
∑
k,p

(
1

N

∑
i

Tie
−ip·Ri

)
f
†
kfk−p (2)

where

Ti = exp

(
−iRi ·

∑
q

qb†qbq

)
is the translation operator for the boson field. The transformed Hamiltonian now takes the
form

U †HU =
∑
k

Hkf
†
kfk (3)

in which

Hk =
∑
q

ωqb
†
qbq +

zt√
N

∑
q

[0q(k)bq + HC] (4)
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where

0q(k) = uq0k−q + vq0k 0k = 1

z

∑
d

Td exp(ik · d).

HereHk represents the Hamiltonian for momentumk. It looks just like the Hamiltonian for
a group of displaced harmonic oscillators except that the external force0q(k) now depends
on the displacement itself. In the following, we replace0q(k) by its expectation value
〈0q(k)〉 in the ground state and determine it self-consistently. Unlike in the ordinary mean-
field decoupling procedure, here we have neglected the fluctuation in0q(k). However, if
we treat the second term in equation (4) as a perturbation, then〈bq〉 is of higher order than
〈0q(k)〉, so our decoupling procedure is justified when〈bq〉 is small. As we will see below
(from equation (5) and equation (10)),〈bq〉 is proportional tot/J , so our approximation is
justified whent/J is small. Whent/J is large, the fluctuation in0q(k) may drastically
change the dispersion. However, our results show good agreement with numerical work
even in this regime. Making use of the following displacement transformation:

b̄q = bq + zt√
N

〈0q(k)〉
ωq

(5)

Hk can be diagonalized as

Hk =
∑
q

ωq b̄
†
q b̄q + E0(k). (6)

HereE0(k) denotes the ground-state energy of the single-hole system with total momentum
k, i.e., the dispersion relation of the hole motion. It reads

E0(k) = − (zt)
2

N

∑
q

〈0q(k)〉2
ωq

. (7)

The ground state of the spin-wave system is the following coherent state ofbq-operators:

|9k〉 = exp

(
− (zt)

2

2N

∑
q

〈0q(k)〉2
ω2
q

− zt√
N

∑
q

〈0q(k)〉
ωq

b†q

)
|0〉. (8)

Unlike in the intermediate-coupling theory, in our self-consistent treatment, the spin-
excitation spectrum is unaltered upon the doping of an additional hole into the
antiferromagnetic background. We think that this is the key difference between our theory
and the intermediate-coupling theory, and it explains why intermediate-coupling theory fails
in the strong-coupling regime. Now〈0q(k)〉 can be evaluated self-consistently in|9k〉. It
is determined by the following integral equation:

〈0q(k)〉 = 1

z

∑
d

exp

(
ik · d− (zt)

2

N

∑
p

〈0p(k)〉2
ω2
p

(1− e−ip·d)

)
(vq + uqe−iq·d). (9)

Making use of the symmetry property of〈0q(k)〉, namely

〈0q+Q(k)〉 = −〈0q(k)〉(Q = (π, π))
this equation can be solved analytically. The solution is

〈0q(k)〉 = exp(−A(k))Mq(k). (10)

Mq(k) is defined by equation (1) andA(k) is determined by the following equation:

A(k) exp(2A(k)) = (zt)2

N

∑
q

Mq(k)
2

ω2
q

. (11)
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Inserting equation (10) into equation (7), we arrive at the following expression for the
dispersion relation:

E0(k) = − (zt)
2

N
exp(−2A(k))

∑
q

Mq(k)
2

ωq
. (12)

Now we consider the spectral weight. By definition,

Zk = |〈φ(0)k |φk〉|2. (13)

Here |φ(0)k 〉 = f †k |0〉 denotes the unperturbed ground state, while|φk〉 = U †f †k |9k〉 denotes
the ground state of the full Hamiltonian. Using equation (2) and equation (8), it is fairly
straightforward to show that

Zk = exp(−A(k)). (14)

We first consider the limiting cases. In the weak-coupling limit (t/J � 1), we have
A(k)→ 0, and, by equation (7),

E0(k) ≈ − (zt)
2

N

∑
q

Mq(k)
2

ωq
. (15)

(We note that this expression is identical to that derived from the SCBA in the same limit
[9].) Hence the bandwidthW is of ordert2/J , and the spectral weightZk → 1 in this limit.
In the strong-coupling limit (t/J � 1), we haveA(k) ∼ ln(t/J ), and, by equation (7),

E0(k) ∼ − ln(t/J )

(∑
q

Mq(k)
2

ω2
q

)−1∑
q

Mq(k)
2

ωq
. (16)

Hence the bandwidth is of orderJ ln(t/J ) and the spectral weight vanishes likeJ/t in this
limit. These findings are in qualitative agreement with both numerical studies [9, 10, 12]
and other analytical studies [4] (see figure 2, later). For example, Lanczos diagonalization
shows thatW varies linearly withJ for 0.1 < J < 0.5 andZk=(π/2,π/2) ≈ 0.622J 0.598 for
0.1 < J < 1 (using t as the unit of energy) while SCBA calculation givesW ≈ 1.5J 0.79

andZk=(π/2,π/2) ≈ 0.63J 0.667 for 0.01< J < 0.5. In contrast, intermediate-coupling theory
predicts a monotonically increasing bandwidth as a function of the coupling strengtht/J

and finite limiting values for both the bandwidth (of ordert) and the spectral weight in the
strong-coupling limit. This may be a consequence of the artificial spin gap produced by
inconsistent treatment of the hole–spin-wave interaction in the earlier theory, which grows
with increasing coupling strengtht/J .

The evolution of the band shape with the coupling strength between these two limiting
cases is displayed in figure 1. In the weak-coupling regime (whent/J < 0.675), the band
minimum is located at(π/2, π/2) and there is a shallow hole pocket around it.(π, 0) is
quasi-degenerate with the band minimum and around it is the much-discussed extended
flat region (figure 1(a)). All of these findings are in good agreement with numerical
studies [9–12] and other analytical work [7]. A recent photoemission experiment has also
found indications of the existence of such quasi-degeneracy and a flat region around(π, 0)
[17], but we note that the experiment was carried out for conditions near those of the
optimal doping regime, so the validity of the rigid-band picture and even the validity of
the t–J model itself are somewhat questionable, and a photoemission experiment on the
antiferromagnetic insulator Sr2CuO2Cl2 shows that although the strong renormalization of
the hole bandwidth can be well described by thet–J model, the band shape cannot. It
was noted that the simplet–J model is not an adequate description of real materials, and
that other perturbations (like the next-nearest-neighbour hopping term) are important in
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Figure 1. The evolution of the band shape with the coupling strength. (a) The weak-coupling
limit. (b) t/J at the critical value 0.675. (c) The strong-coupling limit.kx andky are in units
of π .

determining the hole band shape. With the increase of the coupling strength, the energy
at (π, 0) decreases monotonically relative to the band minimum at(π/2, π/2), and when
t/J exceeds a critical value(t/J )c = 0.675, the energy at(π, 0) will be lower than that at
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Figure 2. The bandwidthW and spectral weightZk as functions ofJ/t . Filled circles: the
SCBA result based on a 16× 16 lattice taken from reference [9]. Solid line: the result from
our earlier theory. Dashed line: the result from the intermediate-coupling theory taken from
reference [8]. The spectral weights are calculated atk = (π/2, π/2).

(π/2, π/2), i.e., the band minimum will be replaced by(π, 0). At the same time,(π/2, π/2)
will become a saddle point and the band shape will take on its strong-coupling-limit topology
(see figures 1(b) and 1(c)). This observation is at variance with many previous results, and
it may be an artifact of the present theory. However, we note that the problem of the
location of the band minimum is a subtle one and the situation is still controversial.

To compare our theory with other studies more quantitatively, we show in figure 2 the
bandwidth and the spectral weight given by our theory and those given by intermediate-
coupling theory as compared with the results of a SCBA calculation based on a 16× 16
lattice [9]. As can be seen from the figures, while the intermediate-coupling theory totally
fails in the strong-coupling regime, our results are in good agreement with those obtained
using the SCBA over the whole range of coupling strength, especially as regards the
spectral weight, which is almost identical in the two theories. This further demonstrates
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Figure 3. The variation of the spectral weight with momentum. The value oft/J is fixed at 1.

the reliability of our theory and the importance of a self-consistent treatment of the hole–
spin-wave interaction. Finally, in figure 3 we display the variation of the spectral weight
with momentum in the Brillouin zone for a fixed value of the coupling strength. Obviously,
the spectral weight is a rather uniform function of the momentum. Its maximum is located
at (0, 0) and its minimum is located at(π/2, π/2), irrespective of the coupling strength,
contrary to the loop expansion result of reference [10].

In summary, we have developed a fully analytical theory for the motion of a single
hole in the t–J model based on the spin-polaron idea. With a self-consistent treatment
of the hole–spin-wave interaction, we are able to overcome the difficulties encountered by
intermediate-coupling theory and hence obtain a theory applicable over the full range of
the coupling strength. We find that the system can be classified into two regimes according
to the location of the band minimum. In the weak-coupling regime (t/J < 0.675), the
band minimum is located at(π/2, π/2), with a shallow hole pocket around it.(π, 0) is
quasi-degenerate with the band minimum and there is an extended flat region around it.
However, in the strong-coupling regime (t/J > 0.675), the band minimum is replaced by
(π, 0), and (π/2, π/2) becomes a saddle point. In both regimes, the band maximum is
located at(0, 0). In the weak-coupling limit (t/J � 1), the bandwidth is of ordert2/J
and the spectral weight approaches unity, while in the strong-coupling limit (t/J � 1), the
bandwidth behaves asJ ln(t/J ) and the spectral weight vanishes likeJ/t .
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